
All information provided in this deck is subject to change without notice.
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Distributed DL/ML Solutions for HPC
systems

Choose the Best Accelerated Technology

Shailen Sobhee – AI Engineer

15 June 2021

Intel Confidential 2Intel Architecture, Graphics, and SoftwareIAGS 2

▪ Types of parallelism

▪ Distribution strategy for

• Machine Learning

• daal4py from oneDAL

• Deep Learning

• Horovod with oneCCL

• torch-ccl example

Agenda

Intel Confidential 3Intel Architecture, Graphics, and SoftwareIAGS

Types of parallelism

• SIMD: Single instruction multiple data
(Data Parallel)

• The same instruction is simultaneously
applied on multiple data items

• MIMD: Multiple instructions multiple data
(Task Parallel)

• Different instructions on different data

• SPMD: Single program multiple data
(MPI Parallel)

• This is the message passing programming on
distributed systems

CPU

memory

CPU

memory

CPU

memory

CPU

memory

CPU

memory

CPU

memory

Intel Confidential 4Intel Architecture, Graphics, and SoftwareIAGS

Shared vs distributed memory system

• Shared memory

• There is a unique address space shared
between the processors

• All the processors can access the same
memory

• Distributed memory

• Each processor has its own local memory

• Messages are exchanged between the
processors to communicate the data

CPU

memory

CPU

memory

CPU

memory

network

CPU

memory

Bus

CPU CPU

Intel Confidential 5Intel Architecture, Graphics, and SoftwareIAGS

What is high-performance computing (HPC)?

▪ Leveraging distributed compute resources to solve complex problems with
large datasets

▪ Terabytes to petabytes to zettabytes of data

▪ Results in minutes to hours instead of days or weeks

Submit job to
the cluster
manager

Get the result
back to analyze Management

services

Compute
resources

Storage
resources

Cluster manager
runs workloads on
distributed
resources, such as
CPUs, FPGAs, GPUs
and disk drives all
interconnected via
network

Intel Confidential 6Intel Architecture, Graphics, and SoftwareIAGS

Domain decomposition method for HPC

▪ The domain decomposition is a technique for dividing a computational problem in several parts
(domains) allowing to solve a large problem on the available resources

▪ Partition the data, assign them to each resource and associate the computation

▪ Communication happens to eventually exchange intermediate results

▪ Aggregate the results from the different resources

CPU

memory

CPU

memory

CPU

memory

n
e

tw
o

rk

Distributing strategy for machine learning

Intel Confidential 8Intel Architecture, Graphics, and SoftwareIAGS

https://www.kaggle.com/pmarcelino/comprehensive-data-exploration-with-python

PERFORMANCE

From Prototype to Production

Intel Confidential 9Intel Architecture, Graphics, and SoftwareIAGS

Why distributed ML/DL (1/2)

• Most Machine Learning tasks assume the data can be easily
accessible, but:

• Data loading on a single machine can be a bottleneck in case of large amount
of data

• To run production applications large memory systems is required (data not
fitting in the local computer RAM)

• Traditional sequential algorithms are not suitable in case of distributed
memory system

• Time to solution is critical on highly competitive market.

Intel Confidential 10Intel Architecture, Graphics, and SoftwareIAGS

Why distributed ML/DL (2/2)

• Deep Learning training takes time:

• Computational complexity of DL training can be up to 100+ ExaFLOP (1
ExaFLOP =1018 op);

• Typical single node performance is up-to tens of TeraFLOPS (1 TF = 1012

op/sec);

• Peak performance of most powerful HPC clusters is up-to tens of PetaFLOPS
(1 PF = 1015 op/sec).

• Time to solution is critical on highly competitive market.

Intel Confidential 11Intel Architecture, Graphics, and SoftwareIAGS

Intel® daal4py

• daal4py makes your Machine Learning algorithms in Python lightning fast and
easy to use

• For scaling capabilities, daal4py also provides the ability to do distributed
machine learning using Intel® MPI library

• daal4py operates in SPMD style (Single Program Multiple Data), which means
your program is executed on several processes (e.g. similar to MPI)

• The use of MPI is not required for daal4py’s SPMD-mode to work, all necessary
communication and synchronization happens under the hood of daal4py

• It is possible to use daal4py and mpi4py in the same program

Intel Confidential 12Intel Architecture, Graphics, and SoftwareIAGS

Scaling Machine Learning Beyond a Single Node

12

scikit-learn* daal4py
Simple Python* API

Powers scikit-learn*

Powered by Intel® oneDALIntel®

MPI

Library
Scalable to multiple nodes

Intel® oneAPI Data Analytics Library
(oneDAL)

Intel® oneAPI Math
Kernel Library

(oneMKL)

Intel® Threading
Building Blocks (TBB)

> python -m daal4py <your-scikit-learn-script> Monkey-patch any scikit-learn* on the
command-line

import daal4py.sklearn
daal4py.sklearn.patch_sklearn()

Monkey-patch any scikit-learn* programmatically

https://intelpython.github.io/daal4py/sklearn.html#

https://intelpython.github.io/daal4py/sklearn.html

Intel Confidential 13Intel Architecture, Graphics, and SoftwareIAGS

oneAPI Data Analytics Library (oneDAL)

13

oneDAL

daal4py

Scikit-Learn*
Equivalents

Scikit-Learn* API
Compatible

Use directly for

• Scaling to multiple nodes

• Streaming data

• Non-homogeneous
dataframes

USE_DAAL4PY_SKLEARN=YES

PCA
Kmeans
LinearRegression
Ridge
SVC
pairwise_distances
Logistic_regression_path

KNeighborsClassifier
RandomForestClassifier
RandomForestRegressor

Intel Confidential 15Intel Architecture, Graphics, and SoftwareIAGS

Processing Modes

15

Distributed
Processing

Online
Processing

D1

D2

D3

R = F(R1,…,Rk)

Si+1 = T(Si,Di)

Ri+1 = F(Si+1)

R1

Rk

D1

D2

Dk

R2 R

Si,Ri

Batch
Processing

D1Dk-1Dk
…

Append

R = F(D1,…,Dk)

d4p.kmeans_init(10, method="plusPlusDense") d4p.kmeans_init(10, method="plusPlusDense“,
distributed=“True”)

d4p.kmeans_init(10, method="plusPlusDense“,
streaming=“True”)

Intel Confidential 16Intel Architecture, Graphics, and SoftwareIAGS

Intel Confidential 17Intel Architecture, Graphics, and SoftwareIAGS

oneDAL K-Means Fit, Cores Scaling
(10M samples, 10 features, 100 clusters, 100 iterations, float32)

Performance varies by use, configuration, and other factors. Learn more at www.intel.com/PerformanceIndex.
Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component can be absolutely secure.
Your costs and results may vary. Intel technologies may require enabled hardware, software, or service activation.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products. For more complete information visit www.intel.com/benchmarks.
Configuration: Testing by Intel as of 10/23/2020. Intel® oneAPI Data Analytics Library 2021.1 (oneDAL); Intel® Xeon® Platinum 8280LCPU @ 2.70GHz, 2 sockets, 28 cores per socket, 10M samples, 10 features, 100 clusters, 100 iterations, float32.

2359.5

1139.1

581.9

306.3
159.4 93.6 45.2

0

10

20

30

40

50

60

70

80

90

100

0.0

500.0

1000.0

1500.0

2000.0

2500.0

1 2 4 8 16 28 56

P
a

ra
ll

e
l

e
ff

ic
ie

n
cy

, %

E
xe

cu
ti

o
n

 t
im

e
, s

e
c

Number of cores
Time, s Efficiency (actual), % Efficiency (ideal), %

http://www.intel.com/PerformanceIndex
http://www.intel.com/benchmarks

Intel Confidential 18Intel Architecture, Graphics, and SoftwareIAGS

Hardware

Intel(R) Xeon(R) Gold 6148 CPU @
2.40GHz, EIST/Turbo on

2 sockets, 20 Cores per socket

192 GB RAM

16 nodes connected with Infiniband

Operating
System

Oracle Linux Server release 7.4

Data Type double

On a 32-node cluster (1280 cores) daal4py computed K-
Means (10 clusters) of 1.12 TB of data in 107.4 seconds and
35.76 GB of data in 4.8 seconds.

On a 32-node cluster (1280 cores) daal4py computed linear
regression of 2.15 TB of data in 1.18 seconds and 68.66 GB
of data in less than 48 milliseconds.

Strong & Weak Scaling via daal4py

19Intel ConfidentialDepartment or Event Name

Intel Confidential 20Intel Architecture, Graphics, and SoftwareIAGS

Distributed K-Means using daal4py

1) Performs a pixel-wise Vector Quantization (VQ) using K-Means

2) Implemented the domain decomposition according to:

▪ d4p.num_procs()

▪ d4p.my_procid()

3) Using the distributed algorithm from Daal4Py

• d4p.kmeans_init(n_colors, method="plusPlusDense",
distributed=True)

4) What is the meaning of d4p.daalinit() & d4p.daalfini()?

5) How does threading compare to multiprocessing in terms of
performance?

Intel Confidential 21Intel Architecture, Graphics, and SoftwareIAGS

Distributed K-Means Summary

• Each process (MPI rank) get’s a
different chunk of data

• Only process #0 reports results

• Inference is using the same routines
as training with 0 maximum
iterations and centroid assignment

• There is no oversubscription since
DAAL only sees the cores “owned”
by the corresponding MPI rank

Intel Confidential 22Intel Architecture, Graphics, and SoftwareIAGS

import daal4py as d4p

daal4py accepts data as CSV files, numpy arrays or pandas dataframes
here we let daal4py load process-local data from csv files
data = "kmeans_dense.csv"

Create algob object to compute initial centers
init = d4p.kmeans_init(10, method="plusPlusDense")
compute initial centers
ires = init.compute(data)
results can have multiple attributes, we need centroids
Centroids = ires.centroids
compute initial centroids & kmeans clustering
result = d4p.kmeans(10).compute(data, centroids)

K-Means using daal4py (batch)

Intel Confidential 23Intel Architecture, Graphics, and SoftwareIAGS

import daal4py as d4p

initialize distributed execution environment
d4p.daalinit()

daal4py accepts data as CSV files, numpy arrays or pandas dataframes
here we let daal4py load process-local data from csv files
data = "kmeans_dense_{}.csv".format(d4p.my_procid())

compute initial centroids & kmeans clustering
init = d4p.kmeans_init(10, method="plusPlusDense", distributed=True)
centroids = init.compute(data).centroids
result = d4p.kmeans(10, distributed=True).compute(data, centroids)

mpirun -n 4 python ./kmeans.py

Distributed K-Means using daal4py

Distribution strategy for deep learning

Intel Confidential 25Intel Architecture, Graphics, and SoftwareIAGS

Deep Learning Training procedure

• Forward propagation: calculate loss function based on the input batch and
current weights;

• Backward propagation: calculate error gradients w.r.t. weights for all layers
(using chain rule);

• Weights update: use gradients to update weights; there are different
algorithms exist - vanilla SGD, Momentum, Adam, etc.

SGD: 𝑊𝑛
∗ = 𝑊𝑛 − 𝛼 ∗ 𝜕𝐸/𝜕𝑊𝑛 or variants

Intel Confidential 26Intel Architecture, Graphics, and SoftwareIAGS

Neural Network parallelism

Data is processed in increments of N.
Work on minibatch samples and
distributed among the available resources.

The work is divided according to the
neurons in each layer. The sample
minibatch is copied to all processors
which compute part of the DNN.

source: https://arxiv.org/pdf/1802.09941.pdf

Intel Confidential 27Intel Architecture, Graphics, and SoftwareIAGS

Multi-nodeparallelization

• Data parallelism:

• Replicate the model across nodes;

• Feed each node with its own batch of
input data;

• Communication for gradients is required
to get their average across nodes;

• Can be either

• AllReduce pattern

• ReduceScatter + AllGather patterns

Intel Confidential 28Intel Architecture, Graphics, and SoftwareIAGS

Multi-node parallelization

• Model parallelism:

• Model is split across nodes;

• Feed each node with the same batch of input data;

• Communication for partial activations is required to gather the result;

Intel Confidential 29Intel Architecture, Graphics, and SoftwareIAGS

Multi-node parallelization

• What parallelism flavor to use?

• Use model parallelism when volume of gradients is much higher than volume
of activations or when model doesn’t fit memory;

• Use data parallelism otherwise;

• Parallelism choice affects activations/gradients ratio

• Data parallelism at scale makes activations << weights

• Model parallelism at scale makes weights << activations

• There’re also other parallelism flavors – pipelined, spatial, etc.

Intel Confidential 30Intel Architecture, Graphics, and SoftwareIAGS

Parameter Server

PS

WORKER 0 WORKER 1 WORKER 2

Tree using gRPC calls

Intel Confidential 31Intel Architecture, Graphics, and SoftwareIAGS

Horovod

WORKER 0
cores 0-3

WORKER 1
cores 4-7

WORKER 2
cores 8-11

Gradient update

Ring All-Reduce using MPI

https://arxiv.org/abs/1802.05799v3

Intel® oneAPI Collective
Communications Library
(oneCCL)

Distributed Training for Deep Neural Network

Intel Confidential 33Intel Architecture, Graphics, and SoftwareIAGS

oneCCL provides optimized communication
patterns for high performance on Intel CPUs
& GPUs to distribute model training across
multiple nodes

Transparently supports many interconnects,
such as Intel® Omni-Path Architecture,
InfiniBand, & Ethernet

Built on top of lower-level communication
middleware-MPI & libfabrics

Enables efficient implementations of
collectives used for deep learning training-
all-gather, all-reduce, & reduce-scatter

Intel® oneAPI Collective Communications Library
Optimize Communication Patterns

Intel Confidential 34Intel Architecture, Graphics, and SoftwareIAGS

Enables efficient implementations of collectives
used for deep learning training – all-gather, all-
reduce, and more

oneCCL is designed for easy integration into deep
learning (DL) frameworks

Provides C++ API and interoperability with DPC++

Supported Collectives

• Allgatherv

• Allreduce

• Alltoallv

• Broadcast

• Reduce

• ReduceScatter

Intel® oneAPI Collective Communications Library
Key Features (part 1/2)

Intel Confidential 35Intel Architecture, Graphics, and SoftwareIAGS

Deep Learning Optimizations include:
- Asynchronous progress for compute

communication overlap
- Dedication of cores to ensure optimal network

use
- Message prioritization, persistence, and out-of-

order execution
- Collectives in low-precision data types

Supported Collectives

• Allgatherv

• Allreduce

• Alltoallv

• Broadcast

• Reduce

• ReduceScatter

Intel® oneAPI Collective Communications Library
Key Features (part 2/2)

Intel Confidential 36Intel Architecture, Graphics, and SoftwareIAGS

$ mpirun –H 192.168.1.100,192.168.1.105 hostname

aipg-infra-07.intel.com

aipg-infra-09.intel.com

$ mpirun –H host1,host2,host3 python hello.py

Hello World!

Hello World!

Hello World!

Message Passing Interface (MPI)

Intel Confidential 37Intel Architecture, Graphics, and SoftwareIAGS

import tensorflow as tf

import horovod.tensorflow as hvd

hvd.init()

opt = tf.train.AdagradOptimizer(0.01 * hvd.size())

opt = hvd.DistributedOptimizer(opt)

hooks = [hvd.BroadcastGlobalVariablesHook(0)]

1

2

3

4

Changes to TensorFlow

Intel Confidential 38Intel Architecture, Graphics, and SoftwareIAGSlscpu

SOCKET
Receptacle on the
motherboard for one
physically packaged
processor.

core
A complete private set
of registers, execution
units, and queues to
execute a program.

Sockets & Cores

Intel Confidential 39Intel Architecture, Graphics, and SoftwareIAGS

$ mpirun
-H hostA,hostB,hostC
-np 6
--map-by ppr:1:socket:pe=2
--oversubscribe
--report-bindings
python train_model.py

OpenMPI

Multiple workers per CPU with OpenMPI

Intel Confidential 40Intel Architecture, Graphics, and SoftwareIAGS

$ mpirun
-H hostA, hostB, hostC
-n 6
-ppn 2
-print-rank-map
-genv I_MPI_PIN_DOMAIN=socket
-genv OMP_NUM_THREADS=24
-genv OMP_PROC_BIND=true
-genv KMP_BLOCKTIME=1
python train_model.py

Intel MPI

Multiple workers per CPU with Intel MPI

Intel Confidential 41Intel Architecture, Graphics, and SoftwareIAGS

R0 hostA [BB/BB/../..][../../../..]

R1 hostA [../../../..][BB/BB/../..]

R2 hostB [BB/BB/../..][../../../..]

R3 hostB [../../../..][BB/BB/../..]

R4 hostC [BB/BB/../..][../../../..]

R5 hostC [../../../..][BB/BB/../..]

SOCKET 0 SOCKET 1

mpirun -H hostA,hostB,hostC -np 6 --map-by
ppr:1:socket:pe=2 …

Multiple workers per CPU

Intel Confidential 42Intel Architecture, Graphics, and SoftwareIAGS
github.com/IntelAI/unet

Try it on

GitHub

Intel Confidential 43Intel Architecture, Graphics, and SoftwareIAGS

• Docker

• SLURM

• Singularity

• NFS

• Lustre

https://www.intel.ai/best-practices-for-tensorflow-on-intel-xeon-processor-based-hpc-infrastructures

BKC/BKM for HPC AI

Intel Confidential 44Intel Architecture, Graphics, and SoftwareIAGS

Distributed Training with torch-ccl
• Distributed Training

Methods
• Data Parallel

• Model Parallel

• Data + Model Parallel

• Types of Multi-worker
communication
• MPI

• oneCCL

• NCCL

• Gloo

44

Node 0 Node 1

Intel Confidential 45Intel Architecture, Graphics, and SoftwareIAGS

torch-ccl

• Holds PyTorch bindings for the Intel® oneAPI Collective Communications
Library (oneCCL).

• Expand Pytorch C10D communication Library, dynamically loaded.

• A Github repository maintained by Intel

• https://github.com/intel/torch-ccl

4
5

Motivation

• Speedup PyTorch
multi-node training on
IA with oneCCL

Methodology

• oneCCL is loaded as a
PyTorch 3rd party
communication library

Features

• C10D dynamic loading

• BF16 support

• CMP/COMM
overlapping

https://github.com/intel/torch-ccl

Intel Confidential 46Intel Architecture, Graphics, and SoftwareIAGS

torch-ccl sample code

https://github.com/intel/optimized-models/tree/master/pytorch/distributed

1. import torch_ccl

2. Access PMI_*
environment variables

3. Set backend to ‘ccl’

Only 3 changes needed from

general torch DDP code

46

https://github.com/intel/optimized-models/tree/master/pytorch/distributed

Intel Confidential 47Intel Architecture, Graphics, and SoftwareIAGS

Distributed Training on multiple sockets

47

https://github.com/intel/optimized-models/tree/master/pytorch/distributed

https://github.com/intel/optimized-models/tree/master/pytorch/distributed

Intel Confidential 48Intel Architecture, Graphics, and SoftwareIAGS

Distributed Training on multiple nodes

48

https://github.com/intel/optimized-models/tree/master/pytorch/distributed

https://github.com/intel/optimized-models/tree/master/pytorch/distributed

Intel Confidential 49Intel Architecture, Graphics, and SoftwareIAGS

Installation Guide

1. Build PyTorch from source

• git clone
https://github.com/pytorch/pytorch.git

• git checkout 762270c

2. Build oneCCL from source

• git clone https://github.com/oneapi-
src/oneCCL.git

3. Build torch-ccl from source

• git clone https://github.com/intel/torch-
ccl.git

49

50Intel ConfidentialDepartment or Event Name

Intel Confidential 51Intel Architecture, Graphics, and SoftwareIAGS

Tensorflow+Horovod/cnn_mnist-hvd.ipynb

Intel Confidential 52Intel Architecture, Graphics, and SoftwareIAGS

Tensorflow

1) How to initialize Horovod and why is it necessary?

2) Why is it necessary to adept the learning rate with larger batches?

3) How can you dynamically adept the learning rate?

4) How to identify rank #1 (0)?

5) Why is it necessary to adept the number of training steps
according to the number of workers / larger batches?

6) How can you dynamically adept the number of training steps?

7) How is the single process performance vs 2 ranks vs 4 ranks?

▪

Intel Confidential 53Intel Architecture, Graphics, and SoftwareIAGS

• Horovod initializes the MPI
communication underneath
and therefore defines rank()
and size()

• In order to reduce the Time
To Train with multiple
workers, therefore increasing
the batch size, the learning
rate needs to scale

• Same for the # of steps for
training

• 4 ranks can be faster since
less threading efficiency is
required in small
convolutions

Intel Confidential

Intel Confidential 54Intel Architecture, Graphics, and SoftwareIAGS

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Notice revision #20110804

54

▪ Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

▪ INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR
A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

▪ Copyright © 2021, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of
Intel Corporation or its subsidiaries in the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

55Intel ConfidentialDepartment or Event Name

Intel Confidential 56Intel Architecture, Graphics, and SoftwareIAGS

Engagement overview on the ASPIRE project
Problem Statement: AI Algorithm to segment* the Metabolic Tumour Volume
(MTV) in oesophageal cancer

56

* Segmentation: Find the contour of the tumor on the CT scan

Intel Confidential 57Intel Architecture, Graphics, and SoftwareIAGS

AI solution to for tumor segmentation:

On-PremiseDatacenter

Deep Neural
Network

(U-Net model)

Trained
model

Labelled Data

Training

Inferencing

New patient
CT scan

Intel Confidential 58Intel Architecture, Graphics, and SoftwareIAGS

Training Platform configuration

SKX

6152

Intel
®

UPI

LBG
DMI

3x16

PCIe
*

x4
3x16

PCIe
*

1x100G
Intel® Omni-Path

Fabric

SKX
6152

**

1x100G
Intel® Omni-Path

Fabric

94
GB
RAM

SKX

6152

Intel®

UPI

3x16

PCIe*

3x16

PCIe* 1x100G
Intel® Omni-Path

Fabric

SKX
6152

1x100G
Intel® Omni-Path

Fabric

94 GB
RAM

94 GB
RAM

Hardware

• 2 Intel® Xeon® 6152 2S nodes
(22 cores per socket) => 88 cores total

• 188 GB RAM / node (376 GB RAM total)

• 300 GB SSD / node (600 GB total)

• Omni-Path interconnect fabric

AI Software stack

Horovod

OpenMP OpenMPI

Intel® Distribution for Python

Intel-optimized
TensorFlow

AI Software stack Configuration

• Intel® Distribution for Python 3.7

• Intel-optimized TensorFlow 1.12

• OpenMPI 4.0.2

• OpenMP (gcc 4.8.5)

• Horovod 0.18.2

Intel Confidential 59Intel Architecture, Graphics, and SoftwareIAGS

Model accuracy improvement

• Using CT scans alone gave low
accuracy*

• We included an additional PET channel

• U-Net Neural Network optimizations

• Custom dropout rates on individual
layers

• Custom loss function (Dice Score Metric,
Jaccard Metric and Tversky Loss)

• Attention-Gating (available in TF 2.0)

0.2

0.6

0.72

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CT scans only PET/CT scans PET/CT scans with

Attention Gating

M
o

d
e

l
A

cc
u

ra
cy

 (
D

S
C

)

Training dataset

Model Accuracy (higher is better; max: 1.0)

Intel Confidential 60Intel Architecture, Graphics, and SoftwareIAGS

Training performance improvement

▪ Intel-optimized TensorFlow with node-level
optimizations

• OMP_NUM_THREADS = #physical cores

• KMP_BLOCKTIME=1

• KMP_AFFINITY=granularity=fine,compact

• INTER and INTRA THREADS

▪ Scaling-out: Horovod – MPI parameter
optimizations

• 72 hours -> 39 hours

60

72

39

21

0

10

20

30

40

50

60

70

80

1 Node, 512x512 CT only Horovod, 2 Nodes 512x512 CT

only

Horovod, 2 Nodes 128x128 PET-

CT

T
ra

in
in

g
 t

im
e

 (
h

o
u

rs
)

Software and data configuration

Training dataset:
3489 CT images, 3489
PET images

1.84x
performance
boost

Intel Confidential 61Intel Architecture, Graphics, and SoftwareIAGS

Performance results (Brain Tumor)

0

10

20

30

40

50

60

70

80

Tensorflow (Stock)

1 worker

1 node

(28 cores)

Intel-optimized

Tensorflow

1 worker

1 node

(28 cores)

Horovod

1 worker

1 node

(28 cores)

Horovod

2 workers

1 node

(56 cores)

Horovod

8 workers

4 nodes

(224 cores)

Horovod

16 workers

4 nodes

(224 cores)

76.2

43.75 44.5

24.2

7.5
5.5

T
ra

in
in

g
 t

im
e

 (
h

o
u

rs
)

-
lo

w
e

r
is

 b
e

tt
e

r

Run configurations

76.2

43.75

0

10

20

30

40

50

60

70

80

90

Tensorflow (Stock)

1 worker

1 node

(28 cores)

Intel-optimized Tensorflow

1 worker

1 node

(28 cores)

T
ra

in
in

g
 t

im
e

 (
h

o
u

rs
)

62

