Choose the Best Accelerated Technology

Distributed DL/ML Solutions for HPC
systems

Shailen Sobhee — Al Engineer
15 June 2021

I t I
I n e ®
All information provided in this deck is subject to change without notice.

Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

» Types of parallelism

Agenda = Distribution strategy for
* Machine Learning

* daal4py from oneDAL

* Deep Learning

e Horovod with oneCCL

 torch-ccl example

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel.

Types of parallelism

« SIMD: Single instruction multiple data
(Data Parallel) — 1 [(o0 ey

* The same instruction is simultaneously
applied on multiple data items

 MIMD: Multiple instructions multiple data
(Task Parallel)
« Different instructions on different data

« SPMD: Single program multiple data
(MPI Parallel) CPU

* Thisis the message passing programming on
distributed systems

CPU

memory

memory

CPU

memory memory

CPU CPU

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel.

Shared vs distributed memory system

m m m * Shared memory
o Thereisaunique address space shared
S ey between the processors
* All the processors can access the same
memory

* Distributed memory

! i E « Each processor has its own local memory

network * Messages are exchanged between the
processors to communicate the data

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel.

What is high-performance computing (HPC)?

» [everaging distributed compute resources to solve complex problems with

large datasets

= Terabytes to petabytes to zettabytes of data

= Results in minutes to hours instead of days or weeks

Submit job to
the cluster
manager

‘ Get the result
- back to analyze

IAG S Intel Architecture, Graphics, and Software

)
(s

Compute
resources

.|||/\

Management
services

Intel Confidential

0 —

resources

Cluster manager
runs workloads on
distributed
resources, such as
CPUs, FPGAs, GPUs
and disk drives all
interconnected via
network

intel.

5

Domain decomposition method for HPC

= The domain decomposition is a technique for dividing a computational problem in several parts
(domains) allowing to solve a large problem on the available resources

= Partition the data, assign them to each resource and associate the computation

= Communication happens to eventually exchange intermediate results

= Aggregate the results from the different resources

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel.

6

Distributing strategy for machine learning

=

intel.

From Prototype to Production

I = = = = = = AV~ AUTONOMOUS ~ CONNECTED SMART CLOUD VIDED
=L Ll Sl] INTERNETUSER ~~ VEHICLES AIRPLANE FACTORY PROVIDERS

1568 - 41B 3IB = 1PB /50PB

N N e = NN TRAFFIC/DAY DATA/DAY DATA/DAY DATA/DAY VIDEO/DAY.

b
:

DATA BY 2020

https://www.kaggle.com/pmarcelino/comprehensive-data-exploration-with-python

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel.

Why distributed ML/DL (1/2)

* Most Machine Learning tasks assume the data can be easily
accessible, but:

» Data loading on a single machine can be a bottleneck in case of large amount
of data

* To run production applications large memory systems is required (data not
fitting in the local computer RAM)

« Traditional sequential algorithms are not suitable in case of distributed
memory system

* Time to solution is critical on highly competitive market.

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel.

9

Why distributed ML/DL (2/2)

* Deep Learning training takes time:

« Computational complexity of DL training can be up to 100+ ExaFLOP (1
ExaFLOP =108 op);

 Typical single node performance is up-to tens of TeraFLOPS (1 TF = 1012
op/sec);

* Peak performance of most powerful HPC clusters is up-to tens of PetaFLOPS
(1 PF = 10> op/sec).

» Time to solution is critical on highly competitive market.

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel.

10

Intel® daaldpy

* daald4py makes your Machine Learning algorithms in Python lightning fast and
easy to use

» For scaling capabilities, daal4py also provides the ability to do distributed
machine learning using Intel® MPI library

» daaldpy operates in SPMD style (Single Program Multiple Data), which means
your program is executed on several processes (e.g. similar to MPI)

* The use of MPIis not required for daaldpy’s SPMD-mode to work, all necessary
communication and synchronization happens under the hood of daal4py

* [tis possible to use daaldpy and mpidpy in the same program

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel. B

Scaling Machine Learning Beyond a Single Node

daal4py Simple Python* API
‘ Powers scikit-learn*

Intel® oneAPI Data Analytics Library Intel®

(oneDAL) Powered by Intel® oneDAL

MPI
Intel® oneAPI Math

Kernel Library
(oneMKL)

Intel® Threading _
Building Blocks (TBB) J Library

Scalable to multiple nodes

Monkey-patch any scikit-learn* on the
command-line

import daal4py.sklearn Monk _” it . ticall
daaldpy.sklearn.patch_sklearn() onkey-patch any scikit-learn* programmatically

https://intelpython.github.io/daal4py/sklearn.html#

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel 12

> python -m daal4py <your-scikit-learn-script>

https://intelpython.github.io/daal4py/sklearn.html

oneAPI| Data Analytics Library (oneDAL)

PCA
Kmeans

LinearRegression KNeighborsClassifier

o i . T . r
g/ége SC|k|_t Learn Scikit Learp AR o ndomForestClassifier
pairwise_distances Equivalents Compatible RandomForestRegressor

Logistic_regression_path

Use directly for

 Scaling to multiple nodes

» Streaming data

* Non-homogeneous
dataframes

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel. 13

Processing Modes

Batch
Processing
'Dk-:I—JDk;l'" -Dl_-_. P _.L :
Append

R = F(D,,...,.D,)

d4p.kmeans_init(10, method="plusPlusDense")

IAG S Intel Architecture, Graphics, and Software

Distributed
Processing

R
'D ' 4

i v\v

R= F(Rl,..., W)

d4p.kmeans_init(10, method="plusPlusDense",

distributed=“True”)

Intel Confidential

Online
Processing
D3
nn D
:...-...I..f.. .Dll .l =l l.
! l. l. . D ’; —; !
S.R;
S|+'| (SnD)
R|+1 = F(Si+1)

d4p.kmeans_init(10, method="plusPlusDense®,

streaming="“True”)

intel.

15

Speedup of oneDAL-Powered Scikit-learn* over Original Scikit-learn

K-means fit 14 x 20, k=1000
K-means predicy, 1M x 20, k=1000 W 3.6
PCA fit, 1Mx 50 W 4.0
PCA transform, 1M x50 I 7.2
Randarm Forest Tt higgsim I .
Random Forest predict, higesim N 5.
Ridpe Reg fit 10M x 20 I -
Linear Reg it 2M £ 100 I 1.2
LASSO fit, SM x 45 I -
SVC it dicnn I -o.o
SVC predict ijcnn (I o
SVCfit, mnist I 4
SVC predicT, nnris I, © 1.0
DESCAM fit, B00K x 50 I 173
train_test_split, 5Mx 20 I 5.4
kMM predicy, 100K x 20, class=2, k=5 I, 1214
kNM predict, 20K x 50, class=2, k=5 I 1 1 3.5

fake 200 100.0 150.0 2000 250.0

44.0

Parfarmance varses by uie, conlipuration, and abher eLiors, Leam mare B vy irrhdl com /Parlarmanceindes

Perfarmance results are based on besting as of dates shown in configuratons and may not reflect all publicly avmilable vpdates. See configuration discosure for details. Mo product or compenent can be absolutely seoume

Your costs and results may vany. Intel technologiss may regare enabled hardware, softerans, or service actemation

Softeare and workloads used in performance tests may have been optmized for performance anly an intel mcroprocessors. Performance tests, such as 8¥Smark and Mabile®ark, are measured usng specific computer systems, components, softvwarne
aperaliont and luncliond, Ary Chnpe 10 &0y & thede FRCIOM My SaUEE The redulls to vary. Yoau should comidlt other information and parfarmence teEtE 10 &8 yau im Tully eaallating your contemplated purchaies, scludng the parfarmance of thal produs

vabven combinad with ather praducs. For rare campbete information viait weesinkelcomitsenchmns

Canfiguration: Testing by Intel as of 10/23/2020. Intel® anesAP| Date Aralytics Libeary 20217 {areDAL), Seikif-learn $.23.7, intel® Ditrbution for Pythan 3.8, IntellR] XeanR) Platinuen STBOLCHMU & 2 70GHz, 2 ssckets, 28 cores per sackel, 100 samples, 10
femtures, 103 clusters, 100 terations, floatl2.

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel.

oneDAL K-Means Fit, Cores Scaling

(10M samples, 10 features, 100 clusters, 100 iterations, float32)

100
2500.0 23595
90
2000.0 80
70
1500.0 60
1139.1 50
1000.0 40

581.9 30

500.0 306.3 20

45.2 10
0.0 - [— — o

1 2 4 8 16 28 56

Number of cores
mmTime,s ——Efficiency (actual),% —Efficiency (ideal), %

Execution time, sec
Parallel efficiency, %

Performance varies by use, configuration, and other factors. Learn more at www.intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component can be absolutely secure.

Your costs and results may vary. Intel technologies may require enabled hardware, software, or service activation.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Configuration: Testing by Intel as of 10/23/2020. Intel® oneAPI Data Analytics Library 2021.7 (oneDAL); Intel® Xeon® Platinum 8280LCPU @ 2.70GHz, 2 sockets, 28 cores per socket, T0M samples, 10 features, 100 clusters, 100 iterations, float32.

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel. 7

http://www.intel.com/PerformanceIndex
http://www.intel.com/benchmarks

Intel(R) Xeon(R) Gold 6148 CPU @
2.40GHz, EIST/Turbo on

Hardware 2 sockets, 20 Cores per socket

Strong & Weak Scaling via daal4py o e

Data Type double

daaldpy Linear Regression Distributed Scalability daaldpy K-Means Distributed Scalability

Hard Scaling: Fixed input: 16M observations, 300 features, 10 clusters

1,4 Hard Scaling: Fixed input: 36M observations, 256 features 140
Weak Scaling: 16M observations and 300 features per node

Weak Scaling: 36M observations and 256 features per node

120

12
1 100
E 2
£ 06 E 6
© ©
04 40
. . i - . . [-
1 2 4 8 16 32 1 2 4 8 16 32
Number of nodes (with 40 cores on 2 sockets each) Number of nodes (with 40 cores on 2 sockets each)
m Batch Mode (single node base-line) m Hard Scaling, 2 processes per node Weak Scaling; 2 processes per node m Batch Mode (single node base-line) m Hard Scaling, 2 process per node Weak Scaling; 2 processes per node
On a 32-node cluster (1280 cores) daald4py computed linear On a 32-node cluster (1280 cores) daaldpy computed K-
regression of 2.15 TB of data in 1.18 seconds and 68.66 GB Means (10 clusters) of 1.12 TB of data in 107.4 seconds and
of data in less than 48 milliseconds. 35.76 GB of data in 4.8 seconds.

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel. 18

HANDS-ON

Department or Event Name Intel Confidential |nte|, 19

Distributed K-Means using daal4py

1) Performs a pixel-wise Vector Quantization (VQ) using K-Means
2) Implemented the domain decomposition according to:

* d4p.num procs)
= d4p.my_procid()
3) Using the distributed algorithm from Daal4Py

* d4p.kmeans init(n colors, method="plusPlusDense",
distributed=True)

4) What is the meaning of d4p.daalinit() & d4p.daalfini()?

5) How does threading compare to multiprocessing in terms of
performance?

IAG S Intel Architecture, Graphics, and Software Intel Confidential

intel.

Distributed K-Means Summary

« Each process (MPI rank) get’s a
different chunk of data

* Only process #0 reports results

* Inference is using the same routines
as training with O maximum
iterations and centroid assignment

* Thereis no oversubscription since
DAAL only sees the cores “owned”
by the corresponding MPI rank

IAG S Intel Architecture, Graphics, and Software

we ip-172-31-4-219, daalpy/

C ® 127.001

: jupyter kmeans-distributed-solution (nsaved changee) @ | Logou
File Edit View Insert Cell Kernel Help Trusted ‘ Python 3 O
+ = &4 B 4 ¥ MRun B C | Code vo=

In [16]: !mpirun -prepend-rank -genv I_MPI_DEBUG=5 -n 2 python -u ./runme.py

[e] [e] MPI startup(): libfabric version: 1.7.eal-impi
[e] [e] MPI startup(): libfabric provider: sockets
[e] [e] MPI startup(): Rank pid Node name

Pin cpu

[6] [@] MPI startup(): @ 15265 ip-172-31-4-219.eu-central-1.compute.in
ternal {e,2}

[e] [e] MPI startup(): 1 15266 ip-172-31-4-219,eu-central-1,compute,in

ternal {1,3}

[e] Fitting model on the data

[e] done in 1.722s.

[6] Predicting color indices on the full image (k-means)
[@] done in @.196s,

[e] converting Image

In [17]: img = Image.open('./quantized.jpg")
img.load()
plt.imshow(img)

out[17]: <matplotlib.image.AxesImage at ©x7fa225332278>

0

500

1000

1500

2000

2500

3000
ook b

0 1000 2000 3000

Intel Confidential

intel.

21

K-Means using daal4py (batch)

import daal4py as d4p

data "kmeans_dense.csv"

init d4p.kmeans_ini1t(10, method="plusPlusDense")

ires init.compute(data)
Centroids = ires.centroids

result = d4p.kmeans(10).compute(data, centroids)

Intel Architecture, Graphics, and Software Intel Confidential intel 22

Distributed K-Means using daal4dpy

import daal4py as d4p

d4p.daalinit(Q)

data = "kmeans_dense_{}.csv".format(d4p.my_procid())

init = d4p.kmeans_1ni1t(10, method="plusPlusDense", distributed=True)
centroids = init.compute(data).centroids
result = d4p.kmeans(10, distributed=True).compute(data, centroids)

mpirun -n 4 python ./kmeans.py

Intel Architecture, Graphics, and Software Intel Confidential intel 23

Distribution strategy tor deep learning

=

intel.

Deep Learning Training procedure

* Forward propagation: calculate loss function based on the input batch and
current weights;

» Backward propagation: calculate error gradients w.r.t. weights for all layers
(using chain rule);

« Weights update: use gradients to update weights; there are different
algorithms gvxist - vanilla SGD, Momentum, Adam, etc.

! !
Input,,_, Input,, Inputy+y Input,,,,
Layer Layer Layer E (I W)
,
n-1 n . n+1
— = <
OE/dInput,_, dE/dInput,, 0E/dInput, OE/0Input,.,
OE/OW,, . OE/OW, OE/OW,

SGD: W, = W,, — a * 0E /0W,, or variants

* * *
Wi—1 W Wi

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel. 25

Neural Network parallelism

/ DATA PARALLELISM \ / MODEL PARALLELISM \

& B
KM%‘E/

Data is processed in increments of N.
Work on minibatch samples and

distributed among the available resources.

The work is divided according to the
neurons in each layer. The sample
minibatch is copied to all processors

which compute part of the DNN.
source: https://arxiv.org/pdf/1802.09941.pdf

IAG S Intel Architecture, Graphics, and Software Intel Confidential

intel. =2

Multi-node parallelization

* Data parallelism:

* Replicate the model across nodes; |

Input data

« Communication for gradients is required ..
to get their average across nodes;

e Feed each node with its own batch of
INnput data;

 Can be either

AllReduce pattern

ReduceScatter + AllGather patterns

IAG S Intel Architecture, Graphics, and Software Intel Confidential

W
Weights
or model

(@)
Output or
activations

intel. =

Multi-node parallelization

* Model parallelism:
* Model is split across nodes;
* Feed each node with the same batch of input data;

« Communication for partial activations is required to gather the result;

Partial outputs or (o)
| W activations Output or
Input data Weights activations

or model

.
T

ALLGATHER

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel. 28

Multi-node parallelization

* What parallelism flavor to use?

* Use model parallelism when volume of gradients is much higher than volume
of activations or when model doesn'’t fit memory;

* Use data parallelism otherwise;

» Parallelism choice affects activations/gradients ratio

Data parallelism at scale makes activations << weights

Model parallelism at scale makes weights << activations

« There're also other parallelism flavors — pipelined, spatial, etc.

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel. 29

Parameter Server

- WORKER O - WORKER 1 - WORKER 2

Tree using gRPC calls

IAG S Intel Architecture, Graphics, and Software Intel Confidential inte|® 30

Horovod

WORKER O WORKER 2
cores 0-3 cores 8-11

WORKER 1
cores 4-7

Ring All-Reduce using MPI
https://arxiv.org/abs/1802.05799v3

IAG S Intel Architecture, Graphics, and Software Intel Confidential inte|® 31

Distributed Training for Deep Neural Network

Intel® oneAPI Collective
Communications Library

.-. (oneCCL)

intel.

Intel® oneAPI Collective Communications Library

Optimize Communication Patterns

oneCCL provides optimized communication

patterns for high performance on Intel CPUs ML/ DL

& GPUs to distribute model training across

multiple nodes —— e
MPI / OFI API DPC++ / LevelO API

Transparently supports many interconnects, i

such as Intel® Omni-Path Architecture,

InfiniBand, & Ethernet e

Built on top of lower-level communication
middleware-MPI & libfabrics OF! providers ﬁ] S orcr: el
Enables efficient implementations of E m“
. . .. HW
collectives used for deep learning training-

all-gather, all-reduce, & reduce-scatter

IAG S Intel Architecture, Graphics, and Software Intel Confidential inte|®

Intel® oneAPI Collective Communications Library

Key Features (part 1/2)

Enables efficient implementations of collectives
used for deep learning training — all-gather, all-
reduce, and more

oneCCL is designed for easy integration into deep
learning (DL) frameworks

Provides C++ APl and interoperability with DPC++

IAG S Intel Architecture, Graphics, and Software Intel Confidential

Supported Collectives

» Allgatherv

* Allreduce

» Alltoallv

* Broadcast

* Reduce

* ReduceScatter

Intel® oneAPI Collective Communications Library
Key Features (part 2/2)

Deep Learning Optimizations include: Supported Collectives
- Asynchronous progress for compute - Allgatherv
communication overlap * Allreduce
- Dedication of cores to ensure optimal network + Alltoally
P * Broadcast
use * Reduce
- Message prioritization, persistence, and out-of- » ReduceScatter

order execution
- Collectives in low-precision data types

Allgather Allreduce

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel. 35

Message Passing Interface (MPI)

$ mpirun -H 192.168.1.100,192.168.1.105 hostname

aipg-infra-07.intel.com

aipg-infra-09.intel.com

$ mpirun -H hostl,host2,host3 python hello.py
Hello World!
Hello World!

Hello World!

IAG S Intel Architecture, Graphics, and Software Intel Confidential inteL 36

Changes to TensorFlow

import tensorflow as tf

import horovod.tensorflow as hvd

hvd.init()

opt = tf.train.AdagradOptimizer(0.01 * hvd.size())

hvd.DistributedOptimizer(opt)

opt

hooks = [hvd.BroadcastGlobalVariablesHook(9)]

IAG S Intel Architecture, Graphics, and Software Intel Confidential inteL 37

Sockets & Cores

SOCKET

Receptacle on the
motherboard for one
physically packaged
processor.

A complete private set
of registers, execution
units, and queues to

SOCKET O SOCKET 1 execute a program.

IAG S Intel Architeciure, Craphics, and Software

Intel Confidential |r\te|® 38

Multiple workers per CPU with OpenMP!

$ mpirun

-H hostA,hostB, hostC

-np 6

--map-by ppr:1l:socket:pe=2
--oversubscribe
--report-bindings

python train model.py

OpenMPI

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel.

Multiple workers per CPU with Intel MPI

$ mpirun

-H hostA, hostB, hostC

-n 6

-ppn 2

-print-rank-map

-genv I _MPI_PIN DOMAIN=socket
-genv OMP_NUM_THREADS=24
-genv OMP_PROC_BIND=true
-genv KMP_BLOCKTIME=1

python train model.py

IAG S Intel Architecture, Graphics, and Software I, +o' Canfic entic . intel 40

Multiple workers per CPU
SOCKETO SOCKET 1

RO hostA [BB/BB/../..]1[../../../..]
Rl hostA [../../../..][BB/BB/../..]
R2 hostB [BB/BBR/../..]1[../../7../..]
R3 hostB [../../../..][BB/BB/../..]
R4 hostC [BB/BB/../..1[../../../..]
R5 hostC [../../../..][BB/BB/../..]

mpirun -H hostA,hostB,hostC -np 6 --map-by
ppr:l:socket:pe=2 ..

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel.

#@ GitHub, Inc. [US]

IntelAl / unet

<> Code Issues 1

Branch: master =

unet [3D/

@ tonyreina Move data format print

i images
B openvino_models
£ README.md

[argparser.py

E| convert_keras_to_tensorflow_check...

E| convert_keras_to_tensorflow servin...

| convert_to_openvino.sh
£ dataloader.py

[E evaluate_model.py

[E model.py

[£] run_unet_horovod.sh
[E] sync_workers.sh

[train.py

[train_horovod.py

Pull requests 1

https://github.com/IntelAl/unet/treefmaster/3D

G Watch ~

Projects 0 Wiki Security Insights

Create new file

Add files via upload

3D OpenVINO. Need to verify the output.

Update README.md

Fixed Horovod. Workers need to all have same number of steps.
Convert keras model to TF. #4

Convert keras model to TF. #4

3D OpenVINO. Need to verify the output.

Fixed Horovod. Workers need to all have same number of steps.
3D OpenVINO. Need to verify the output.

Move data format print

Fixed Horovod. Workers need to all have same number of steps.
Update sync_workers.sh

Move data format print

Move data format print

Star 18 YFork 18
Settings
Upload files Find file History

% @O0

Latest commit 99e9f8f 2 hours ago

B months a

2 months ago
2 hours ago
3 hours ago

3 months ago
2 hours ago

2 hours ago

github.com/IntelAl/unet

IAG S Intel Architecture, Graphics, and Software

Intel Confidential

intel. <

BKC/BKM for HPC Al

WHITE PAPER (intel.
Docker

« SLURM
Best Practices for Scaling Deep Learning
Training and Inference with TensorFlow* On ° Singularity
Intel® Xeon® Processor-Based HPC
Infrastructures e NFS
e Lustre
Version: 1.1
Date of Issue: January 2019
Prepared By: Aishwarya Bhandare", Deepthi Karkada®, Kushal Datta’, Anupama

Kurpad?, Vamsi Sripathi®, Sun Choif, Vikram Saletore'
SConnectivity Group & YAl Products Group, Data Center Group

Customer Solutions Technical Enabling, Intel Corporation

Yo -

e (=
iAU) Intel Architecture, Graphics, and Software Intel Confidential intel. 43

Distributed Training with torch-ccl
* Distributed Training

Node O Node 1 Methods
RSP - 1o 10 o
l : l Data Parallel
param0 grad0 &= param0 & grad0 == * Model Parallel
2 = « Data + Model Parallel
param1 | gradl = param1 gradl =

* Types of Multi-worker

2 d2 4 aram2 rad2 | - '
param2 [grad2 B P 9 5 communication
param3 grad3 & param3 grad3 S e MP]

T alredue | T « oneCCL
« NCCL
* Gloo

IAG S Intel Architecture, Graphics, and Software Intel Confidential inte|® a4

torch-ccl

* Holds PyTorch bindings for the Intel® oneAPI Collective Communications
Library (oneCCL).

* Expand Pytorch C10D communication Library, dynamically loaded.

* A Github repository maintained by Intel
« https://github.com/intel/torch-ccl

« Speedup PyTorch « oneCCL is loaded as a « C10D dynamic loading
multi-node training on PyTorch 3" party « BF16 support
IA with oneCCL communication library « CMP/COMM
overlapping

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel.

45

https://github.com/intel/torch-ccl

torch-ccl sample code

import os

import torch

import torch.nn as nn

from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist

import torch_ccl

class Model(nn.Module):

def __init_ (self):

Only 3 changes needed from

general torch DDP code

super(Model, self). init ()
self.linear = nn.lLinear(4, 5}

def forward(self, input):

1. import torch_ccl

return self.linear(input)

__name__ == "_ _main__": —"""’,,,,—’,,,,,,,,,,,————”””””””—————’

2. Access PMI|_*
environment variables

os.environ['RANK'] = os.environ.get{ 'PMI_RAMK', -1)
os.environ["WORLD_SIZE'] = os.environ.get({'PMI_SIZE', -1)

Initialize the process group with cc{—EiiffEf—————ﬂ————_ﬂ_—_—_____________———————'—‘—'—'———————
dist.init_process_group(backend="ccl")

3. Set backend to ‘ccl’

model = Model()
if dist.get_world size() > 1:
model=00F (model)

for i in range(3):
input = torch.randn(2, 4)

labels = torch.randn{2, 5)

https://github.com/intel/optimized-models/tree/master/pytorch/distributed

IAG S Intel Architecture, Graphics, and Software Intel Confidential

intel.

46

https://github.com/intel/optimized-models/tree/master/pytorch/distributed

Distributed Training on multiple sockets

source ~/f.localfenv/setvars.sh

export LD_PRELOAD="${CONDA_PREFIX}/lib/libiomp5.so0"
export MASTER_ADDR="127.8.@.1"

export MASTER_PORT="29508"

Example:

Run 2 processes on 2 sockets. (28 cores/socket, 4 cores for CCL, 24 cores for computation)
3

CCL_WORKER_COUNT means per instance threads used by CCL.

CCL_WORKER_COUNT, CCL_WORKER_AFFINITY and I_MPI_PIN DOMAIN should be consistent.

export CCL_WORKER_COUNT=4
export CCL_WORKER_AFFINITY="0,1,2,3,28,29,31,32"

mpiexec.hydra -np 2 -ppn 2 -1 -genv I_MPI_PIN_DOMAIN=[Ox0000Q00FFFFFFO,0xFFFFFFOBEOEE0RE]

-genv KMP_BLOCKTIME=1 -genv KMP_AFFINITY=granularity=fine,compact,1,0 \
-genv OMP_NUM_THREADS=24 python -u ut_memory.py

https://github.com/intel/optimized-models/tree/master/pytorch/distributed

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel. 47

https://github.com/intel/optimized-models/tree/master/pytorch/distributed

Distributed Training on multiple nodes

source ~/.localfenv/setvars.sh

export LD _PRELOAD="%${CONDA PREFIX}/lib/libiomp5.so"

export MASTER_ADDR="1@.xxx.xxx.xxx" # IP address on which users launch MPI command
export MASTER PORT="2950@"

Example:

Run 4 processes on 2 Nodes, 2 sockets/Node (28 cores/socket, 4 cores for CCL, 24 cores for computation)

#
#
#
CCL_WORKER_COUNT means per instance threads used by CCL.
CCL WORKER COUNT, CCL WORKER AFFINITY and I MPI PIN DOMAIM should be consistent.
#

"hostfile™ : add all Nodes' IP into this file

export CCL_WORKER_COUNT=4
export CCL_WORKER_AFFINITY="9,1,2,3,28,29,31,32"

mpiexec.hydra -f hostfile -np 4 -ppn 2 -1 -genv I_MPI_PIN DOMAIN=[@x0000000FFFFFFO,@xFFFFFFEeo0Q08Q]

-genv KMP_BLOCKTIME=1 -genv KMP_AFFINITY=granularity=fine,compact,1,@ Y
-genv OMP_NUM_THREADS=24 python -u ut_memory.py

https://github.com/intel/optimized-models/tree/master/pytorch/distributed

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel. 48

https://github.com/intel/optimized-models/tree/master/pytorch/distributed

Installation Guide

1. Build PyTorch from source ¢ Installation
* glt Clone To install torch-ccl :
https://github.com/pytorch/pytorch.git 1 Install PyTorch,
° git checkout 762270c 2. Install Intel oneCCL (please refer to this page).

3. Source the oneCCL environment.

2. Build oneCCL from source

« git clone https://github.com/oneapi- $ source <ccl_install psth>/env/setvars.sh
src/oneCCL.git 4 Instal the (SR pin package
3. Build torch-ccl from source s vinon setun.oy inetard
« git clone https://github.com/intel/torch-
ccl.git

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel 49

HANDS-ON

Department or Event Name Intel Confidential |nte|, 50

Tensorflow+Horovod/cnn_mnist-hvd.ipynb

Delete the checkpoint if needed, otherwise TF won't train any further

- rm -rf checkpoints

Let's start changing the numer of MPI tasks, what performance difference
would you expect?

- mpirun -prepend-rank -genv OMP_HUM THREADS=2 -genv I MPI DEBUG=5 -n 2 python -u cnn_mnist-hvd.py
- mpirun -prepend-rank -genv OMP_HUM THREADS=2 -genv I _MPI DEBUG=5 -n 4 python -u cnn_mnist-hvd.py
- check the size of the dataset:

- 1s -lha ~/.keras/datasets/

Intel Python and Optimized Tensorflow

- source activate hvd-impi
- pip show tensorflow | grep Location
- useful to locate the TF installation for see the library linked: ldd $Location/tensorflow/libtensorflow...so
- rm-rf /tmp/*
- export export MKLDNM_VERBOSE=1

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel 51

Tensorflow+Horovod/cnn_mnist-hvd.ipynb

1) How to initialize Horovod and why is it necessary?

2) Why is it necessary to adept the learning rate with larger batches?

4) How to identify rank #1 (0)?

5) Why is it necessary to adept the number of training steps
according to the number of workers / larger batches?

)
)
3) How can you dynamically adept the learning rate?
)
)

6) How can you dynamically adept the number of training steps?
/) How is the single process performance vs 2 ranks vs 4 ranks?

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel. 22

MNIST CNN Horovod Demo Summary

* Horovod initie
communicatl
and therefore
and size

e |Inordertoreq -
To Train with
workers, therg
the batch size
rate needs to

 Same forthey =
training .

* 4 ranks can b
less threading
required in sm
convolutions

File

C ® 127.0.0.1:12346/nc

Edit

F

[18]:

[11]:

[12]:

[13]:

[14]:

[15]:

04_mnist_deep_horovod_Soluti

: Ju pyter 04_mnist_deep_horovod_Solution Last Checkpaint: a few seconds ago [autosaved)

View Insert Cell Kemel Help

@ B 4+ % MRun B C | Code o=

y_conv, keep_prob = deepnni{x)

define the loss
cross_entropy = tf.losses.sparse softmax_cross_entropy(labels=y , logits=y conv)
cross_entropy = tf.reduce_mean(cross_entropy)

#multiply Llearning rate by #ranks due to the Larger global batch size
opt = tf.train.AdamOptimizer(le-4 * hvd.size())

opt = hvd.DistributedOptimizer(opt)

global_step = tf.train.get_or_create_global_step()

train_step = opt.minimize(cross_entropy, global_step=global_step

define accuracy - notice the difference to the Loss function
correct_prediction = tf.equal(tf.argmax(y_conv, 1), y_)
correct_prediction = tf.cast(correct_prediction, tf.float32)
accuracy = tf.reduce_mean{correct_prediction)

#directory for MonitoredTrainingSession checkpoints - only rank @
checkpoint_dir = "graphs/horoved’ if hvd.rank()} == @ else None

hooks = [
#rank @ will broadcast global variabes -> having equal weights on all nodes
hvd.BroadcastGlobalVariablesHook(8),
#dividing #steps by #ranks to address the increased learning rate
tf.train.StopAtStepHook({last_step=12@0 // hvd.size()),

tf.train.LoggingTensorHook(tensors={"step’': global_step, 'loss': cross_entropy, 'accuracy': accuracy}, every n_iter=108),

time_start = time.time()
with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir, hooks=hooks) as mon_sess:
while not mon_sess.should stop():
batch = mnist.train.next batch(se)
mon_sess.run(train_step, feed dict={x: batch[@], y : batch[1], keep_prob: @.5})
if hvd.rank() == @:
print("'TTT: %g' ¥ (time.time() - time_start))

INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.

Trusted

)

Legout

|idp_tf O

I AG &elrﬁehﬁtté‘rhtéaiture, Graphics, and Software

Intel Confidential

intel.

53

Legal Disclaimer & Optimization Notice

» Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

= INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR
A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

= Copyright © 2021, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of
Intel Corporation or its subsidiaries in the U.S. and other countries.

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Notice revision #20110804

Intel Architecture, Graphics, and Software Intel Confidential intel

54

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

CASE-STUDY

Department or Event Name Intel Confidential intel 55

Engagement overview on the ASPIRE project

Problem Statement: Al Algorithm to segment* the Metabolic Tumour Volume
(MTV) in oesophageal cancer

* Segmentation: Find the contour of the tumor on the CT scan

IAG S Intel Architecture, Graphics, and Software Intel Confidential 5 6 intel 26

Al solution to for tumor segmentation:

Labelled Data Q
BIINEIE]

New patient

Network Training UrEineEe
(U-Net model) (e Inferencing
Datacenter On-Premise

IAG S Intel Architecture, Graphics, and Software Intel Confidential |r\te|® 57

Training Platform configuration

Intel-optimized
TensorFlow

Horovod

Intel® Distribution for Python

OpenMP OpenMPI Al Software stack

SKX
6152

o B > ==

IR I 113 I A

3x16 3x16

RAM

+ 1x100G + 1x100G
PcIlﬁtel ® Omni-Path P?n?el ® Omni-Path

Fabric Fabric

IAG S Intel Architecture, Graphics, and Software Intel Confidential

Al Software stack Configuration
* Intel® Distribution for Python 3.7
* Intel-optimized TensorFlow 1.12
« OpenMPI 4.0.2

« OpenMP (gcc 4.8.5)

 Horovod 0.18.2

Hardware

2 Intel® Xeon® 6152 2S nodes
(22 cores per socket) => 88 cores total

« 188 GB RAM / node (376 GB RAM total)

« 300 GB SSD / node (600 GB total)
e Omni-Path interconnect fabric

intel.

58

Model accuracy improvement

* Using CT scans alone gave low
accuracy”

Model Accuracy (higher is better; max: 1.0)

o
o

0.72

©
N

 We included an additional PET channel

0.6

o
)

o©
o1

* U-Net Neural Network optimizations

o«
w

 (Custom dropout rates on individual
layers

0.2

CT scans only PET/CT scans PET/CT scans with
Attention Gating

Model Accuracy (DSC)
N i

o
Y

o

 Custom loss function (Dice Score Metric,
Jaccard Metric and Tversky Loss)

Training dataset

« Attention-Gating (available in TF 2.0)

IAG S Intel Architecture, Graphics, and Software Intel Confidential inteL 59

60

Training performance improvement

= |ntel-optimized TensorFlow with node-level 80
optimizations 70

. OMP_NUM THREADS = #physical cores N
+ KMP_BLOCKTIME="

50

40

30

Training time (hours)

« KMP_AFFINITY=granularity=fine,compact

20

* INTER and INTRA THREADS 10

= Scaling-out; Horovod — MPI parameter
optimizations

e 72 hours ->39 hours

IAG S Intel Architecture, Graphics, and Software Intel Confidential

72
1.84x
performance
boost

1 Node, 512x512 CT only vod, 2 No d 512x512 CT Horovod, 2 No d 128x128 PET-

Software and data configuration

Training dataset:
3489 CT images, 3489
PET images

intel. ¢

Performance results (Brain Tumor)

90
- 76.2
“»n 70
—
S
) 80 9 60
5 @ 50 43.75
3]
S 70 I '
(2] -
8 - CéO 40
2 £ 30
=) ©
, 50 = 20
v
> 40 10
(@]
= 30 0
7] -
= Tensorflow (Stock) Intel-optimized Tensorflow
- 20 1 worker 1 worker
%D 1 node 1 node
c 10 (28 cores) (28 cores)
o
— 0

Tensorflow (Stock)

1 worker Intel-optimized
1 node Tensorflow Horovod
(28 cores) 1 worker 1 worker Horovod
1 node 1 node
(28 cores) (28 cores) ’ :vg;l;eers Horovod
(56) 8 workers Horovod
cores
Zézodes 16 workers
(cores) 4 nodes

(224 cores)

Run configurations

IAG S Intel Architecture, Graphics, and Software Intel Confidential intel. 61

