endering Toolkit

OSPRay Studio

Isha Sharma

=

intel.

Agenda

= Intel® OSPRay Studio overview

= Feature Highlights

= Interactive Demo: Introduction

= OSPRay Studio Design

" [nteractive Demo: Animation

= Python Bindings; concept and Demo

= Interactive Demo: Scalable Rendering with MPI

Intel® oneAPI Rendering Toolkit |nte|®

Intel® OSPRay Studio overview

A simple-to-use scene graph-based application for driving all of

OSPRay'’s features

Intel® OSPRay

—

(oeeD

oNEAPI

TOOI_KIT » Intel® Embree Intel® Open VKL Intel® Open Image Denoise
\

CPU
(Intel® Xeon® processors / Intel® Core™ processors)

Intel® oneAPI Rendering Toolkit |nte|®

Intel® OSPRay Studio

Feature Highlights

* File Importers — obj/mtl, glTF, vdb, structured and unstructured volume formats

* Scene and image exporter — saves rendered frames in different image formats. Or
save the scene file with materials/lights properties of objects.

* Scene Graph Library — a library of node classes and visitors classes to create and
render a scene graph, including Animation and Skinning.

* Plugins — runtime loadable shared-object libraries that can extend many aspects of
the scene graph and application Ul

* Modes — different ways of interaction with scene. Example, GUI or Batch mode of
INnteraction.

* GUIl and Widgets — standard GUI and custom GUI controls which extend the main GUI
and provide feature specific controls

Intel® oneAPI Rendering Toolkit |nte|® 4

Visualization in the broader term..
= ' - ;_ —_,- ~

Scientific Visualization

Architecture Visualization

Intel® oneAPI Rendering Toolkit intel

Intel® OSPRay Studio

Building OSPRay Studio

= Make sure you have OSPRay Superbuild. For more information: https://github.com/ospray/ospray#cmake-
superbuild

= Export following variables to install locations of the superbuild:
« ospray DIR, openvkl DIR, embree DIR, rkcommon DIR
= Clone OSPRay Studio

* git clone https://github.com/ospray/ospray_studio/

= Create build directory and change directory to it (we recommend keeping a separate build directory)
« cd ospray studio && mkdir build && cd build
= Then run the typical CMake routine

* cmake .. && make -j ‘nproc’

* Setup LD_LIBRARY PATH (on Linux) or DYLD_LIBRARY_PATH (on macQOS) correctly to contain all dependencies

intel. s

Intel® oneAPI Rendering Toolkit

https://github.com/ospray/ospray#cmake-superbuild
https://github.com/ospray/ospray_studio/

Intel® OSPRay Studio

Interactive Demo: Introduction

OSPRay Studio Design

Components

 Application — defining user-interaction for eg: GUI application called
MainWindow

« Scene Graph Library — a library for implementing its internal scene
representation

Intel® oneAPI Rendering Toolkit

intel.

8

Scene Graph Library

» The Scene Graph(SG) library implements the Abstract Scene
Graph(or simply a Scene Graph) representation of the scene. It
contains:

* Nodes classes, used to instantiate nodes for creating a Scene Graph.

* Visitors classes, to perform node specific tasks to be performed on the
scene graph, once it is created.

Intel® oneAPI Rendering Toolkit |nte|®

Scene Graph Library

* Types of Node classes:

* Generic: Base node class, implements important functions like createChild() and
add().

* Strongly-typed: Implements specific data-types like string or int.
» OSPRay-typed: creates OSPRay objects internally and stores a handle to them.
» Nodes are connected in a parent-child tree structure,

= The root Frame node contains Framebuffer, Camera, Renderer, and World children —
which are the main objects of the OSPRay ospRenderFrame() API.

= More documentation here:
https://github.com/ospray/ospray_studio/blob/master/doc/scenegraph.md

Intel® oneAPI Rendering Toolkit |nte|® 10

https://github.com/ospray/ospray_studio/blob/master/doc/scenegraph.md

Abstract Scene Graph

* An Abstract Scene Graph is a design concept

and represents the internal scene structure
of OSPRay Studio.

* Directed Acyclic Graph(DAG) of scene
objects

= Every object is represented as a node and
has at least one parent (unless it is root)

Intel® oneAPI Rendering Toolkit

Fig: A Directed Acyclic Graph

intel.

Abstract Scene Graph

» Example: a light object can be
represented as a light node in the
scene graph, having a transform

node as parent to define its position
in the world.

Fig: DAG implementation of scene graph

Light-Transform

Intel® oneAPI Rendering Toolkit |r\te|® 12

Abstract Scene Graph

= Different scene structure than its renderer
scene hierarchy @
= Scene graph can be rendered using a particular
rendering implementation(Visitors) @
= Allows for loose coupling between the two
scene representations
= Customization of scene objects like lights, T
camera

* [ntroduction of new objects in the scene during
rendering time

. BaCkend scene hlerarChy IS Updated . Fig: Difference in scene hierarchy for adding a simple
simu [taneoug[y, and new frames are received geometry to the world between OSPRay Studio (left) and
OSPRay (right). In the abstract scene graph representation of
from OSP Ray OSPRay Studio we have fewer objects

Intel® oneAPI Rendering Toolkit |nte|® 13

Saving a scene graph

» portable visualization state that
contains all scene objects like
lights, cameras, etc.

» scene objects in JSON-format.

= sg files are editable i.e.; modity
a scene graph offline

Intel® oneAPI Rendering Toolkit

"children": [
{

"description": "<no description>",

"name": "imperial_ crown_rootXfm",
"subType": "Transform",
1'I'typeﬂ' : 9,
"value": {
"affine": [0.0, 0.0, 0.0 7],
"linear": {
"x": (1.0, 0.0, 0.0 1,
"y": [0.0, 1.0, 0.0 1,
"z": [0.0, 0.0, 1.0]
}
}
]}
r
"description": "<no description>",
"filename": "AustrianCrown/impCrown.obj",

"name": "impCrown.obj.obj_importer",
"subType": "importer_obij",
"type": 20

Fig: excerpt from a saved .sg file

intel.

14

Visitors

Design pattern to implement different operations on different elements in a hierarchical object
structure.

= Classes for implementing the rendering backends. Only OSPRay
implemented currently.

= Converts scene graph to a representation understood by the
rendering backend.

= Commits scene graph data into a format that the OSPRay API
expects

= Can also perform other node specific tasks like generate Widgets
for every node

Intel® oneAPI Rendering Toolkit |nte|®

15

Visitors example: RenderScene()

createlnstance()

addLight()

applyMaterials() applyTransferFunction()

createGeometry() createGeometry() createVolume()

Intel® oneAPI Rendering Toolkit |nte|® 16

Intel® OSPRay Studio Plugins

Customizations through plugins:

Shared-object libraries loaded at runtime

» Used for implementing new features, example: file loaders, Ul menus and panels,
scene graph nodes (ex. add new geometry, volumes, materials).

* Inherit from the Plugin class and implement init_plugin_<name>() function
* The derived Plugin class can implement either a Ul panel or a mainMethod()

* The Ul elements on these panels allow the plugin to interact with the user and scene
graph.

* Plugins can also register new scene graph nodes to create new scene graph
functionality.

Intel® oneAPI Rendering Toolkit |nte|®

17

Scientific Visualization:; NASA Fun3D data

NASA Fun3d Mars retropropulsion dataset https://fun3d.larc.nasa.gov/

File Edit Wiew

Plugins
¥ Transfer Function editor

rial editor
TransferFunctions

590080_impor ter

¥ Camera snap shots X
+ key to add new snapshots
Q
Linear Transfer Function 1
Jet Color maps
Ice Fire

save ko cams, json
Grayscale
Rho
Er

2

¥ Light editor

Opacity scale 5. 000 [| : lights
sun
Min: 0.0000000 Max dist
fill

{ 27.2999992 Value range

edikt
v diskt

visible

8. 000 [| intensiky
Ri255 | 6:255 | B:255 [cotor
type: “"distant"

. 5d8 o0 W-1.000 direction
[| 9. 530
remove

angularDiameter

new light
spok ¥ type
ignition name

\'; Animation Controls

Pause time & Loop

Playback speed
Animaktion tracks

& fun3d

Intel® oneAPI Rendering Toolkit

intel.

https://fun3d.larc.nasa.gov/

Product Visualization: Bentley Motors collab

=)

BENTLEY

Vehicles:
1.Flying Spur | St James Red (Solid)
2.Flying Spur | Hallmark
3.Flying Spur | Meteor
¥ 4. Flying Spur - Blackline | St James Red (Solid)
St{\gms Red (Solid) .ExteriurPamt

Extreme Silver
Moonbeam

St James Red (Solid)
Hal Imark

Ice

Monaco Yellow (Solid)
Orange Flame

Sequin Blue

xtreme Silver
forange F|ame
B

 ame

St las | Sequin Blue

11. Continental GT Convertible | Monaco Yellow (Solid)
12.Bentayga - Speed

13.Bacalar (prop) | Monaco Yellow (Solid)

14.Blower (prop) | Verdant

»
»
»
»
»
»
»
»
»
»

Scene Presets:
Ow1 Emblem oW1 Front
W1 Low Entrance
| HMero 1 Hero 2
Hero Cabin Hero Mascot
Hero Headlamp Mulliner 1
Mulliner 2 Mulliner Cabin
Bentayga Cabin Blower
Hospitality 1 Hospitality 2
Advanced:
Camera
Lighting

RenderSettings

Bentley Motors Ltd. Vehicle Models used with permission

Intel® oneAPI Rendering Toolkit |nte|® 19

GUI and Widgets

» Fast GUI to modify scene
properties

= Dear ImGui for GUI and menus
atop a GLFW window

= Used for creating both main menu
and widgets

= Fasy to minimize , avoids cluttering

= \Widgets provide custom GUI
controls like animation controls

Intel® oneAPI Rendering Toolkit |r\te|® 20

Intel® OSPRay Studio

Interactive Demo: Animation

Python Bindings

» Preliminary implementation of python bindings of the OSPRay
Studio scene graph library using pyBind11.

» Creates a Python module that can be imported in your python code
and used directly.

= Allows you to call functions and pass data from Python to C++

Intel® oneAPI Rendering Toolkit

intel. =2

Python Bindings

Short excerpt from the
implementation:

* Include pybind11 and sg library
headers

* Use PYBIND11 _MODULE macro to
create the py:module object

* sg.def() defines a function that'’s
exported by the bindings, meaning it
will be visible from Python.

Intel® oneAPI Rendering Toolkit

PYBINDT1_MODULE(pysg, sg)

{
/| OSPRay initialization ///////////]//]/]]]

sg.def("init", &init);

/[Main Node factory function///////]]]]]]

sg.def(

"createNode", py::overload_cast<<std::string,

std::string>(&createNode));
sg.def("createNode",
py::overload_cast<std::string, std::string,
rkcommon::utility::Any>(
&createNode));

intel.

23

Python Bindings

» Calling the exported functions
from python:

= [mport pysg, name should be
same as used with
PYBIND11 MODULE macro.

» Call functions/classes exported
directly, here we call function
createChild()

Intel® oneAPI Rendering Toolkit

#sglutorial.py

import pysg as sg
from pysg import Any, vec3f, Data, vec2i

sg.inif(sys.argv)

W=1024
H=768

window__size = Any(vec2i(W, H))
frame = sg.Frame()

frame.createChild("windowSize", "vec2i", window_size)
world = frame.child("world")

intel.

24

Intel® OS

Interactive Demo: Scalable Rendering with MPI

Intel Technical Webinar

D

Ray Studio

intel =

