
OSPRay Studio
Intel® oneAPI Rendering Toolkit

Isha Sharma



Intel® oneAPI Rendering Toolkit 2

Agenda

▪ Intel® OSPRay Studio overview

▪ Feature Highlights

▪ Interactive Demo: Introduction

▪ OSPRay Studio Design

▪ Interactive Demo: Animation

▪ Python Bindings; concept and Demo

▪ Interactive Demo: Scalable Rendering with MPI



Intel® oneAPI Rendering Toolkit 3

Intel® OSPRay Studio

CPU 
(Intel® Xeon® processors / Intel® Core™ processors)

Intel® OSPRay

Intel® Embree Intel® Open VKL Intel® Open Image Denoise

Intel® OSPRay Studio overview

A simple-to-use scene graph-based application for driving all of
OSPRay’s features



Intel® oneAPI Rendering Toolkit 4

Intel® OSPRay Studio

• File Importers – obj/mtl, glTF, vdb, structured and unstructured volume formats

• Scene and image exporter – saves rendered frames in different image formats. Or 
save the scene file with materials/lights properties of objects.

• Scene Graph Library – a library of node classes and visitors classes to create and 
render a scene graph, including Animation and Skinning.

• Plugins – runtime loadable shared-object libraries that can extend many aspects of 
the scene graph and application UI

• Modes – different ways of interaction with scene. Example, GUI or Batch mode of 
interaction.

• GUI and Widgets – standard GUI and custom GUI controls which extend the main GUI 
and provide feature specific controls

Feature Highlights



Intel® oneAPI Rendering Toolkit 5

Visualization in the broader term..

Scientific Visualization Medical Visualization

Architecture Visualization

Product Visualization 

NASA Fun3d Mars retropropulsion dataset Bentley Motors Ltd. Vehicle Models used with permission
CTA-cardio.nrrd from slicer testing data

Amazon lumberyard bistro



Intel® oneAPI Rendering Toolkit 6

Intel® OSPRay Studio

Building OSPRay Studio
▪ Make sure you have OSPRay Superbuild. For more information: https://github.com/ospray/ospray#cmake-

superbuild

▪ Export following variables to install locations of the superbuild:

• ospray_DIR , openvkl_DIR, embree_DIR, rkcommon_DIR

▪ Clone OSPRay Studio

• git clone https://github.com/ospray/ospray_studio/

▪ Create build directory and change directory to it (we recommend keeping a separate build directory)

• cd ospray_studio && mkdir build && cd build

▪ Then run the typical CMake routine

• cmake .. && make -j `nproc` 

• Set up LD_LIBRARY_PATH (on Linux) or DYLD_LIBRARY_PATH (on macOS) correctly to contain all dependencies 

https://github.com/ospray/ospray#cmake-superbuild
https://github.com/ospray/ospray_studio/


7Intel Technical Webinar

Intel® OSPRay Studio
Interactive Demo: Introduction



Intel® oneAPI Rendering Toolkit 8

OSPRay Studio Design

• Application – defining user-interaction for eg: GUI application called 
MainWindow

• Scene Graph Library – a library for implementing its internal scene 
representation

Components



Intel® oneAPI Rendering Toolkit 9

Scene Graph Library

▪ The Scene Graph(SG) library implements the Abstract Scene 
Graph(or simply a Scene Graph) representation of the scene. It 
contains:

• Nodes classes, used to instantiate nodes for creating a Scene Graph.

• Visitors classes, to perform node specific tasks to be performed on the 
scene graph, once it is created.



Intel® oneAPI Rendering Toolkit 10

Scene Graph Library

▪ Types of Node classes :

• Generic: Base node class, implements important functions like createChild() and 
add().

• Strongly-typed: Implements specific data-types like string or int.

• OSPRay-typed: creates OSPRay objects internally and stores a handle to them.

▪ Nodes are connected in a parent-child tree structure,

▪ The root Frame node contains Framebuffer, Camera, Renderer, and World children –
which are the main objects of the OSPRay ospRenderFrame() API.

▪ More documentation here: 
https://github.com/ospray/ospray_studio/blob/master/doc/scenegraph.md

https://github.com/ospray/ospray_studio/blob/master/doc/scenegraph.md


Intel® oneAPI Rendering Toolkit 11

Abstract Scene Graph

▪ An Abstract Scene Graph is a design concept 
and represents the internal scene structure 
of OSPRay Studio.

▪ Directed Acyclic Graph(DAG) of scene 
objects

▪ Every object is represented as a node and 
has at least one parent (unless it is root) Fig: A Directed Acyclic Graph



Intel® oneAPI Rendering Toolkit 12

Abstract Scene Graph

▪ Example: a light object can be 
represented as a light node in the 
scene graph, having a transform 
node as parent to define its position 
in the world.

Fig: DAG implementation of scene graph



Intel® oneAPI Rendering Toolkit 13

Abstract Scene Graph

▪ Different scene structure than its renderer 
scene hierarchy 

▪ Scene graph can be rendered using a particular 
rendering implementation(Visitors)

▪ Allows for loose coupling between the two 
scene representations

▪ Customization of scene objects like lights, 
camera

▪ Introduction of new objects in the scene during 
rendering time

▪ Backend scene hierarchy is updated 
simultaneously, and new frames are received 
from OSPRay. 

Fig: Difference in scene hierarchy for adding a simple 
geometry to the world between OSPRay Studio (left) and 
OSPRay (right). In the abstract scene graph representation of 
OSPRay Studio we have fewer objects 



Intel® oneAPI Rendering Toolkit 14

Saving a scene graph

▪ portable visualization state that 
contains all scene objects like 
lights, cameras, etc. 

▪ scene objects in JSON-format. 

▪ .sg files are editable i.e.; modify 
a scene graph offline

Fig: excerpt from a saved .sg file



Intel® oneAPI Rendering Toolkit 15

Visitors

▪ Classes for implementing the rendering backends. Only OSPRay
implemented currently.

▪ Converts scene graph to a representation understood by the 
rendering backend. 

▪ Commits scene graph data into a format that the OSPRay API 
expects

▪ Can also perform other node specific tasks like generate Widgets 
for every node

Design pattern to implement different operations on different elements in a hierarchical object 
structure. 



Intel® oneAPI Rendering Toolkit 16

Visitors example: RenderScene()



Intel® oneAPI Rendering Toolkit 17

Intel® OSPRay Studio Plugins

Customizations through plugins:

Shared-object libraries loaded at runtime

• Used for implementing new features, example: file loaders, UI menus and panels, 
scene graph nodes (ex. add new geometry, volumes, materials).

• Inherit from the Plugin class and implement init_plugin_<name>() function

• The derived Plugin class can implement either a UI panel or a mainMethod()

• The UI elements on these panels allow the plugin to interact with the user and scene 
graph.

• Plugins can also register new scene graph nodes to create new scene graph 
functionality.



Intel® oneAPI Rendering Toolkit 18

Scientific Visualization: NASA Fun3D data
NASA Fun3d Mars retropropulsion dataset https://fun3d.larc.nasa.gov/

https://fun3d.larc.nasa.gov/


Intel® oneAPI Rendering Toolkit 19

Product Visualization: Bentley Motors collab

Bentley Motors Ltd. Vehicle Models used with permission



Intel® oneAPI Rendering Toolkit 20

GUI and Widgets

▪ Fast GUI to modify scene 
properties

▪ Dear ImGui for GUI and menus 
atop a GLFW window

▪ Used for creating both main menu 
and widgets

▪ Easy to minimize , avoids cluttering

▪ Widgets provide custom GUI 
controls like animation controls 



21Intel Technical Webinar

Intel® OSPRay Studio
Interactive Demo: Animation



Intel® oneAPI Rendering Toolkit 22

Python Bindings

▪ Preliminary implementation of python bindings of the OSPRay
Studio scene graph library using pyBind11.

▪ Creates a Python module that can be imported in your python code 
and used directly.

▪ Allows you to call functions and pass data from Python to C++



Intel® oneAPI Rendering Toolkit 23

Python Bindings
Short excerpt from the 
implementation:

• Include pybind11 and sg library 
headers

• Use PYBIND11_MODULE macro to 
create the py::module object 

• sg.def() defines a function that’s 
exported by the bindings, meaning it 
will be visible from Python.

PYBIND11_MODULE(pysg, sg)

{

// OSPRay initialization ///////////////////

sg.def("init", &init);

// Main Node factory function/////////////

sg.def(

"createNode", py::overload_cast<std::string, 

std::string>(&createNode));

sg.def("createNode",

py::overload_cast<std::string, std::string, 

rkcommon::utility::Any>(

&createNode));

….

}



Intel® oneAPI Rendering Toolkit 24

Python Bindings

▪ Calling the exported functions 
from python:

▪ Import pysg, name should be 
same as used with 
PYBIND11_MODULE macro.

▪ Call functions/classes exported 
directly, here we call function 
createChild()

#sgTutorial.py

import pysg as sg

from pysg import Any, vec3f, Data, vec2i

sg.init(sys.argv)

W = 1024

H = 768

window_size = Any(vec2i(W, H))

frame = sg.Frame()

frame.createChild("windowSize", "vec2i", window_size)

world = frame.child("world")

..

..



25Intel Technical Webinar

Intel® OSPRay Studio
Interactive Demo: Scalable Rendering with MPI


